A Comprehensive Benchmark of the Artificial Immune Recognition System (AIRS)

نویسندگان

  • Lingjun Meng
  • Peter van der Putten
  • Haiyang Wang
چکیده

Artificial Immune Systems are a new class of algorithms inspired by how the immune system recognizes, attacks and remembers intruders. This is a fascinating idea, but to be accepted for mainstream data mining applications, extensive benchmarking is needed to demonstrate the reliability and accuracy of these algorithms. In our research we focus on the AIRS classification algorithm. It has been claimed previously that AIRS consistently outperforms other algorithms. However, in these papers AIRS was compared to benchmark results from literature. To ensure consistent conditions we carried out benchmark tests on all algorithms using exactly the same set up. Our findings show that AIRS is a stable and robust classifier that produces around average results. This contrasts with earlier claims but shows AIRS is mature enough to be used for mainstream data mining.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Nonlinear Resource Allocation on AIRS Classifier Accuracy

Artificial Immune Recognition System (AIRS) is most popular immune inspired classifier. It also has shown itself to be a competitive classifier. AIRS uses linear method to allocate resources. In this paper, two different nonlinear resource allocation methods apply to AIRS. Then new algorithms are tested on 8 benchmark datasets. Based on the results of experiments, one of them increases the accu...

متن کامل

An Efficient and Effective Immune Based Classifier

Problem statement: Artificial Immune Recognition System (AIRS) is most popular and effective immune inspired classifier. Resource competition is one stage of AIRS. Resource competition is done based on the number of allocated resources. AIRS uses a linear method to allocate resources. The linear resource allocation increases the training time of classifier. Approach: In this study, a new nonlin...

متن کامل

Semantic Preserving Data Reduction using Artificial Immune Systems

Artificial Immune Systems (AIS) can be defined as soft computing systems inspired by immune system of vertebrates. Immune system is an adaptive pattern recognition system. AIS have been used in pattern recognition, machine learning, optimization and clustering. Feature reduction refers to the problem of selecting those input features that are most predictive of a given outcome; a problem encoun...

متن کامل

Artificial Immune Recognition System (airs) a Review and Analysis

The natural immune system is a robust and powerful information process system that demonstrates features such as distributed control, parallel processing and adaptation or learning via experience. Artificial Immune Systems (AIS) are machine-learning algorithms that embody some of the principles and attempt to take advantages of the benefits of natural immune systems for use in tackling complex ...

متن کامل

Effect of Fuzzy Resource Allocation Method on Airs Classifier Accuracy

Artificial Immune Recognition System (AIRS) is an immune inspired classifier that is comparable to many popular classifiers. Many researches have been conducted to improve the accuracy of AIRS and to identify the significant components of AIRS that could empower it for better performance. Some of these researches have focused on the resource allocation component of AIRS. This study investigates...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005